

Django Groups Manager

Django Groups Manager allows to manage groups based on django-mptt [https://github.com/django-mptt/django-mptt].

The application offers three main classes: Group, Member and GroupMember.
It’s possible to map groups and members with Django’s auth models, in order to use external applcations such django-guardian [https://github.com/lukaszb/django-guardian] to handle permissions.

The basic idea of Groups is that each Group instance could have a Group instance as parent (this relation is managed via django-mptt).

The code is hosted on github [https://github.com/vittoriozamboni/django-groups-manager].

Documentation

	Installation

	Basic usage

	Django auth models integration

	Settings
	Auth model synchronization

	Permissions

	Templates

	Defaults

	Use cases
	Projects management with Proxy Models

	Projects management with Model Mixins

	Model mixins example

	Resource assignment via role permissions

	Resource assignment via group type permissions
	Example

	Custom member model

	Custom signals

	Expiring memberships

	API
	Models
	Main models

	Group Models

	Relation Management

	Perms

	Templates
	Requirements

	Structure

	Style

	Tests

	TODO

	Changelog

Changelog

	
	19-01-11 (0.6.2):

	
	Added migrations for expiration_date and verbose names

	
	18-01-18 (0.6.1):

	
	Added support for Django 2

	
	17-12-09 (0.6.0) (thank you Oskar Persson!):

	
	Added group type permission handling

	Added expiration_date attribute

	Added support to django-jsonfield

	
	16-11-08 (0.5.0):

	
	Added models mixins

	Removed compatibility for Django < 1.7

	
	16-10-10 (0.4.2):

	
	Added initial migration

	Removed null attributes from m2m relations

	
	16-04-19 (0.4.1):

	
	Removed unique to group name (this cause issues when subclassing, since it does not allows to have same names for different models)

	Fixed issue with python 3 compatibility in templatetags (thank you Josh Manning!)

	
	16-03-01 (0.4.0):

	
	Added kwargs to signals for override settings parameters

	Added remove_member to group as a method (previously must be done manually)

	
	16-02-25 (0.3.0):

	
	Added permissions assignment to groups

	Added support for Django 1.8 and 1.9

	
	15-05-05 (0.2.1):

	
	Added ‘add’ to default permissions

	
	15-05-05 (0.2.0):

	
	Changed retrieval of permission’s name: ‘view’, ‘change’ and ‘delete’ will be translated to ‘<name>_<model_name>’, the others are left untouched (see permission name policy)

	Added GroupsManagerMeta class to Group that allows to specify the member model to use for members list (see custom Member model)

	14-10-29 (0.1.0): Initial version

Indices and tables

	Index

	Module Index

	Search Page

Installation

First of all, install the latest build with pip:

pip install django-groups-manager

or the repository master version for latest updates:

pip install https://github.com/vittoriozamboni/django-groups-manager/archive/master.zip

Add groups_manager to installed apps:

INSTALLED_APPS += (
 'groups_manager',
)

Run syncdb or migrate:

python manage.py migrate

If you are upgrading from version <0.4.2, fake the initial migration:

python manage.py migrate groups_manager 0001 --fake

If you want to use standard templates, add groups_manager’s urls from urls.py:

urlpatterns = ('',
 # ...
 url(r'^groups-manager/', include('groups_manager.urls', namespace='groups_manager')),
 # ...
)

Supported templates are based on bootstrap3, and django-bootstrap3 application is required:

pip install django-bootstrap3

If you don’t want to use bootstrap3, you can override forms (see Templates documentation).

Basic usage

A simple use case for this application is the tracking of customers groups. Each organization can have more than one division, and a member can be in more than one:

from groups_manager.models import Group, GroupType, Member

Create group types (optional)
organization = models.GroupType.objects.create(label='Organization')
division = models.GroupType.objects.create(label='Division')

Organization A has 'commercials' and 'managers'
org_a = Group.objects.create(name='Org A, Inc.', group_type=organization)
org_a_commercials = Group.objects.create(name='Commercials', group_type=division, parent=org_a)
org_a_managers = Group.objects.create(name='Managers', group_type=division, parent=org_a)
Tina is a commercial
tina = Member.objects.create(first_name='Tina', last_name='Rossi')
org_a_commercials.add_member(tina)
Jack is a manager
jack = Member.objects.create(first_name='Jack', last_name='Black')
org_a_managers.add_member(jack)

#Assign objects to members or groups
product = Product.objects.create(name='Fancy product') # Product has 'sell_product' permission
tina.assign_object(org_a_commercials, product)
tina.has_perm('sell_product', product) # True
jack.has_perm('sell_product', product) # False
budget = Budget.objects.create(name='Facilities', amount=5000) # has 'use_budget' permission
org_a_managers.assign_object(budget)
tina.has_perm('use_budget', budget) # False
jack.has_perm('use_budget', budget) # True

Django auth models integration

It is possibile to auto-map Group and Member instances with django.contrib.auth.models Group and User.
To enable mapping, "AUTH_MODELS_SYNC" setting must be set to True (default: False), and also Group and Member instances attribute django_auth_sync (that is True by default).

Add to your settings file:

GROUPS_MANAGER = {
 'AUTH_MODELS_SYNC': True,
}

This will generate auth’s groups and users each time a new groups_manager’s group or member is created.
In addition, every time a groups_manager’s GroupMember instance is generated (either via instance creation or via Group’s add_member method), the django user is added to django group.

Settings

The application can be configured via settings with GROUPS_MANAGER dictionary.
Valid keys and values are described below.

Auth model synchronization

	"AUTH_MODELS_SYNC": enables Group, Member and GroupMember synchronization with django’s Group and User (default: False);

	"AUTH_MODELS_GET_OR_CREATE": use get_or_create method instead of create for django’s Group and User models when associating to Group or Member (default: True);

	"GROUP_NAME_PREFIX": prefix used for autogenerated django Group’s name (default: "DGN_")

	"GROUP_NAME_SUFFIX": suffix used for autogenerated django Group’s name. The special value "_$$random" can be used for generate a pseudo-unique suffix of length 8 (the first block of an UUID4) (default: "_$$random")

	"USER_USERNAME_PREFIX": prefix used for autogenerated django User’s username (default: "DGN_")

	"USER_USERNAME_SUFFIX": suffix used for autogenerated django User’s username. The special value "_$$random" can be used (default: "_$$random")

Permissions

	
	"PERMISSIONS" dictionary: this setting controls the assign_object method of a GroupMember instance.

	Each key controls a specific group type. Values are lists (or, in case of "owner", also a dictionary) with a combination of permissions’ prefixes "view" (view), "change" (change), "delete" (delete) characters. Obviously, a "view_modelname" permission must be added to the model permissions. You can also add your custom permissions in form of <prefix> where your permission is <prefix>_modelname.

Valid keys are:

	"owner": a list or a dictionary (with keys as roles’ codename attribute). This object-permissions are assigned directly to the user (default: ['view', 'change', 'delete'])

	"group": a string. This object-permissions are assigned to the related group (default: ['view', 'change'])

	"groups_upstream": a string. This object-permissions are assigned to the ancestors groups (default: ['view'])

	"groups_downstream": a string. This object-permissions are assigned to the descendants groups (default: [])

	"groups_siblings": a string. This object-permissions are assigned to the siblings groups (default: ['view'])

Note

The four special permission names "add", "view", "change", and "delete" are translated to <permission>_<model_name> string during permission’s name lookup.
This allows to use a standard permission policy (view, change, delete) but also allows to use custom permissions.

An example of permissions assigned by role can be found on use cases.

Templates

	TEMPLATE_STYLE: name of the templates folder inside “groups_manager”. By default is "bootstrap3", this means that templates are searched inside folder “groups_manager/bootstrap3”

Defaults

Default values are:

GROUPS_MANAGER = {
 # User and Groups sync settings
 'AUTH_MODELS_SYNC': False,
 'GROUP_NAME_PREFIX': 'DGM_',
 'GROUP_NAME_SUFFIX': '_$$random',
 'USER_USERNAME_PREFIX': 'DGM_',
 'USER_USERNAME_SUFFIX': '_$$random',
 # Permissions
 'PERMISSIONS': {
 'owner': ['view', 'change', 'delete'],
 'group': ['view', 'change'],
 'groups_upstream': ['view'],
 'groups_downstream': [],
 'groups_siblings': ['view'],
 },
 # Templates
 'TEMPLATE_STYLE': "bootstrap3",
}

Use cases

Projects management with Proxy Models

John Boss is the project leader. Marcus Worker and Julius Backend are the
django backend guys; Teresa Html is the front-end developer and Jack College is the
student that has to learn to write good backends.
The Celery pipeline is owned by Marcus, and Jack must see it without intercations.
Teresa can’t see the pipeline, but John has full permissions as project leader.
As part of the backend group, Julius has the right of viewing and editing, but not to
stop (delete) the pipeline.

1) Define models in models.py:

from groups_manager.models import Group, GroupType

class Project(Group):
 # objects = ProjectManager()

 class Meta:
 proxy = True

 def save(self, *args, **kwargs):
 if not self.group_type:
 self.group_type = GroupType.objects.get_or_create(label='Project')[0]
 super(Project, self).save(*args, **kwargs)

class WorkGroup(Group):
 # objects = WorkGroupManager()

 class Meta:
 proxy = True

 def save(self, *args, **kwargs):
 if not self.group_type:
 self.group_type = GroupType.objects.get_or_create(label='Workgroup')[0]
 super(WorkGroup, self).save(*args, **kwargs)

class Pipeline(models.Model):
 name = models.CharField(max_length=100)

 class Meta:
 permissions = (('view_pipeline', 'View Pipeline'),)

Warning

Remember to define a view_modelname permission.

2) Connect creation and deletion signals to the proxy models
(This step is required if you want to sync with django auth models):

from django.db.models.signals import post_save, post_delete
from groups_manager.models import group_save, group_delete

post_save.connect(group_save, sender=Project)
post_delete.connect(group_delete, sender=Project)
post_save.connect(group_save, sender=WorkGroup)
post_delete.connect(group_delete, sender=WorkGroup)

3) Creates groups:

project_main = testproject_models.Project(name='Workgroups Main Project')
project_main.save()
django_backend = testproject_models.WorkGroup(name='WorkGroup Backend', parent=project_main)
django_backend.save()
django_backend_watchers = testproject_models.WorkGroup(name='Backend Watchers',
 parent=django_backend)
django_backend_watchers.save()
django_frontend = testproject_models.WorkGroup(name='WorkGroup FrontEnd', parent=project_main)
django_frontend.save()

4) Creates members and assign them to groups:

john = models.Member.objects.create(first_name='John', last_name='Boss')
project_main.add_member(john)
marcus = models.Member.objects.create(first_name='Marcus', last_name='Worker')
julius = models.Member.objects.create(first_name='Julius', last_name='Backend')
django_backend.add_member(marcus)
django_backend.add_member(julius)
teresa = models.Member.objects.create(first_name='Teresa', last_name='Html')
django_frontend.add_member(teresa)
jack = models.Member.objects.create(first_name='Jack', last_name='College')
django_backend_watchers.add_member(jack)

5) Create the pipeline and assign custom permissions:

custom_permissions = {
 'owner': ['view', 'change', 'delete'],
 'group': ['view', 'change'],
 'groups_upstream': ['view', 'change', 'delete'],
 'groups_downstream': ['view'],
 'groups_siblings': [],
}
pipeline = testproject_models.Pipeline.objects.create(name='Test Runner')
marcus.assing_object(django_backend, pipeline, custom_permissions=custom_permissions)

Note

The full tested example is available in repository source code, testproject’s tests.py under test_proxy_models method.

Projects management with Model Mixins

Mixins allows to create shared apps based on django-groups-manager.
The mixins approach has pros and cons.

	Pros:

	
	models are completely customizable (add all fields you need);

	all fields are in the same table (with subclassed models, only extra fields are stored in the subclass table);

	better for shared applications (the “original” django-groups-manager tables don’t share entries from different models).

	Cons:

	
	all external foreign keys must be declared in the concrete model;

	all signals must be declared with concrete models.

Model mixins example

The following models allow to manage a set of Organizations with related members (from organization app).
In this example, a last_edit_date is added to models, and member display name has the user email (if defined).

1) Define models in models.py:

from groups_manager.models import GroupMixin, MemberMixin, GroupMemberMixin, GroupMemberRoleMixin, \
 GroupEntity, GroupType, \
 group_save, group_delete, member_save, member_delete, group_member_save, group_member_delete

class OrganizationMemberRole(GroupMemberRoleMixin):
 pass

class OrganizationGroupMember(GroupMemberMixin):
 group = models.ForeignKey('OrganizationGroup', related_name='group_membership')
 member = models.ForeignKey('OrganizationMember', related_name='group_membership')
 roles = models.ManyToManyField(OrganizationMemberRole, blank=True)

class OrganizationGroup(GroupMixin):
 last_edit_date = models.DateTimeField(auto_now=True, null=True)
 short_name = models.CharField(max_length=50, default='', blank=True)
 country = CountryField(null=True, blank=True)
 city = models.CharField(max_length=200, blank=True, default='')

 group_type = models.ForeignKey(GroupType, null=True, blank=True, on_delete=models.SET_NULL,
 related_name='%(app_label)s_%(class)s_set')
 group_entities = models.ManyToManyField(GroupEntity, null=True, blank=True,
 related_name='%(app_label)s_%(class)s_set')

 django_group = models.ForeignKey(DjangoGroup, null=True, blank=True, on_delete=models.SET_NULL)
 group_members = models.ManyToManyField('OrganizationMember', through=OrganizationGroupMember,
 through_fields=('group', 'member'),
 related_name='%(app_label)s_%(class)s_set')

 class Meta:
 permissions = (('manage_organization', 'Manage Organization'),
 ('view_organization', 'View Organization'))

 class GroupsManagerMeta:
 member_model = 'organizations.OrganizationMember'
 group_member_model = 'organizations.OrganizationGroupMember'

 def save(self, *args, **kwargs):
 if not self.short_name:
 self.short_name = self.name
 super(OrganizationGroup, self).save(*args, **kwargs)

 @property
 def members_names(self):
 return [member.full_name for member in self.group_members.all()]

class OrganizationMember(MemberMixin):
 last_edit_date = models.DateTimeField(auto_now=True, null=True)
 django_user = models.ForeignKey(DjangoUser, null=True, blank=True, on_delete=models.SET_NULL,
 related_name='%(app_label)s_%(class)s_set')

 class GroupsManagerMeta:
 group_model = 'organizations.OrganizationGroup'
 group_member_model = 'organizations.OrganizationGroupMember'

 def __unicode__(self):
 if self.email:
 return '%s (%s)' % (self.full_name, self.email)
 return self.full_name

 def __str__(self):
 if self.email:
 return '%s (%s)' % (self.full_name, self.email)
 return self.full_name

2) Connect creation and deletion signals to the models

(This step is required if you want to sync with django auth models):

post_save.connect(group_save, sender=OrganizationGroup)
post_delete.connect(group_delete, sender=OrganizationGroup)

post_save.connect(member_save, sender=OrganizationMember)
post_delete.connect(member_delete, sender=OrganizationMember)

post_save.connect(group_member_save, sender=OrganizationGroupMember)
post_delete.connect(group_member_delete, sender=OrganizationGroupMember)

3) Customize the flag for AUTH_MODEL_SYNC

If you plan to create a reusable app and to let users decide if sync or not with Django auth models
independently from groups_manager settings, you should define a separated function that
returns the boolean value from your own settings:

def organization_with_mixin_get_auth_models_sync_func(instance):
 return organization.SETTINGS['DJANGO_AUTH_MODEL_SYNC'] # example

def organization_group_member_save(*args, **kwargs):
 group_member_save(*args, get_auth_models_sync_func=organization_get_auth_models_sync_func, **kwargs)

def organization_group_member_delete(*args, **kwargs):
 group_member_delete(*args, get_auth_models_sync_func=organization_get_auth_models_sync_func, **kwargs)

post_save.connect(organization_group_member_save, sender=OrganizationGroupMember)
post_delete.connect(organization_group_member_delete, sender=OrganizationGroupMember)

Note

The full tested example is available in repository source code, testproject’s tests.py under test_model_mixins method.

Resource assignment via role permissions

John Money is the commercial referent of the company; Patrick Html is the web
developer. The company has only one group, but different roles.
John can view and sell the site, and Patrick can view, change and delete the site.

1) Define models in models.py:

class Site(Group):
 name = models.CharField(max_length=100)

 class Meta:
 permissions = (('view_site', 'View site'),
 ('sell_site', 'Sell site'),)

2) Create models and relations:

from groups_manager.models import Group, GroupMemberRole, Member
from models import Site
Group
company = Group.objects.create(name='Company')
Group Member roles
commercial_referent = GroupMemberRole.objects.create(label='Commercial referent')
web_developer = GroupMemberRole.objects.create(label='Web developer')
Members
john = Member.objects.create(first_name='John', last_name='Money')
patrick = Member.objects.create(first_name='Patrick', last_name='Html')
Add to company
company.add_member(john, [commercial_referent])
company.add_member(patrick, [web_developer])
Create the site
site = Site.objects.create(name='Django groups manager website')

3) Define custom permissions and assign the site object:

custom_permissions = {
 'owner': {'commercial-referent': ['sell_site'],
 'web-developer': ['change', 'delete'],
 'default': ['view']},
 'group': ['view'],
 'groups_upstream': ['view', 'change', 'delete'],
 'groups_downstream': ['view'],
 'groups_siblings': ['view'],
}
john.assign_object(company, site, custom_permissions=custom_permissions)
patrick.assign_object(company, site, custom_permissions=custom_permissions)

4) Check permissions:

john.has_perms(['view_site', 'sell_site'], site) # True
john.has_perm('change_site', site) # False
patrick.has_perms(['view_site', 'change_site', 'delete_site'], site) # True
patrick.has_perm('sell_site', site) # False

Note

The full tested example is available in repository source code, testproject’s tests.py under test_roles method.

Resource assignment via group type permissions

Permissions can also be applied to related groups filtered by group types.
Instead of simply using a list to specify permissions one can use a dict to
specify which group types get which permissions.

Example

John Money is the commercial referent of the company; Patrick Html is the web
developer. John and Patrick can view the site, but only Patrick can change and
delete it.

1) Define models in models.py:

class Site(Group):
 name = models.CharField(max_length=100)

 class Meta:
 permissions = (('view_site', 'View site'),
 ('sell_site', 'Sell site'),)

2) Create models and relations:

from groups_manager.models import Group, GroupType, Member
from models import Site

Parent Group
company = Group.objects.create(name='Company')

Group Types
developer = GroupType.objects.create(label='developer')
referent = GroupType.objects.create(label='referent')

Child groups
developers = Group.objects.create(name='Developers', group_type=developer, parent=company)
referents = Group.objects.create(name='Referents', group_type=referent, parent=company)

Members
john = Member.objects.create(first_name='John', last_name='Money')
patrick = Member.objects.create(first_name='Patrick', last_name='Html')

Add to groups
referents.add_member(john)
developers.add_member(patrick)

Create the site
site = Site.objects.create(name='Django groups manager website')

3) Define custom permissions and assign the site object:

custom_permissions = {
 'owner': [],
 'group': ['view'],
 'groups_downstream': {'developer': ['change', 'delete'], 'default': ['view']},
}
john.assign_object(company, site, custom_permissions=custom_permissions)

4) Check permissions:

john.has_perm('view_site', site) # True
john.has_perm('change_site', site) # False
john.has_perm('delete_site', site) # False
patrick.has_perms(['view_site', 'change_site', 'delete_site'], site) # True

Note

The full tested example is available in repository source code, testproject’s tests.py under test_group_types_permissions method.

Custom member model

By default, Group’s attribute members returns a list of Member instances.
If you want to create also a custom Member model in addition to custom Group, maybe you
want to obtain a list of custom Member model instances with members attribute.
This can be obtained with GroupsManagerMeta’s member_model attribute. This class
must be defined in Group subclass/proxy.
The value of the attribute is in <application>.<model_name> form.

1) Define models in models.py:

from groups_manager.models import Group, Member

class Organization(Group):

 class GroupsModelMeta:
 model_name = 'myApp.OrganizationMember'

class OrganizationMember(Member):
 pass

2) Call Organization members attribute:

org_a = Organization.objects.create(name='Org, Inc.')
boss = OrganizationMember.objects.create(first_name='John', last_name='Boss')
org_a.add_member(boss)
org_members = org_a.members # [<OrganizationMember: John Boss>]

Note

A tested example is available in repository source code, testproject’s tests.py under
test_proxy_model_custom_member and test_subclassed_model_custom_member methods.

Custom signals

If you redefine models via proxy or subclass and you need to manage sync permissions with
a different setting (like MY_APP['AUTH_MODELS_SYNC'] you need to use different signals functions
when saving objects and relations.
Signals functions accept kwargs:

	get_auth_models_sync_func: a function that returns a boolean (default honours GROUPS_MANAGER['AUTH_MODELS_SYNC'] setting), that also take an instance parameter to allow additional checks;

	prefix and suffix on group_save``: override GROUPS_MANAGER['GROUP_NAME_PREFIX'] and GROUPS_MANAGER['GROUP_NAME_SUFFIX'];

	prefix and suffix on member_save``: override GROUPS_MANAGER['USER_USERNAME_PREFIX'] and GROUPS_MANAGER['USER_USERNAME_SUFFIX'];

So, for example, your wrapping functions will be like this:

class ProjectGroup(Group):

 class Meta:
 permissions = (('view_projectgroup', 'View Project Group'),)

 class GroupsManagerMeta:
 member_model = 'testproject.ProjectGroupMember'
 group_member_model = 'testproject.ProjectGroupMember'

class ProjectMember(Member):

 class Meta:
 permissions = (('view_projectmember', 'View Project Member'),)

class ProjectGroupMember(GroupMember):
 pass

def project_get_auth_models_sync_func(instance):
 return MY_APP['AUTH_MODELS_SYNC']

def project_group_save(*args, **kwargs):
 group_save(*args, get_auth_models_sync_func=project_get_auth_models_sync_func,
 prefix='PGS_', suffix='_Project', **kwargs)

def project_group_delete(*args, **kwargs):
 group_delete(*args, get_auth_models_sync_func=project_get_auth_models_sync_func, **kwargs)

def project_member_save(*args, **kwargs):
 member_save(*args, get_auth_models_sync_func=project_get_auth_models_sync_func,
 prefix='PMS_', suffix='_Member', **kwargs)

def project_member_delete(*args, **kwargs):
 member_delete(*args, get_auth_models_sync_func=project_get_auth_models_sync_func, **kwargs)

def project_group_member_save(*args, **kwargs):
 group_member_save(*args, get_auth_models_sync_func=project_get_auth_models_sync_func, **kwargs)

def project_group_member_delete(*args, **kwargs):
 group_member_delete(*args, get_auth_models_sync_func=project_get_auth_models_sync_func, **kwargs)

post_save.connect(project_group_save, sender=ProjectGroup)
post_delete.connect(project_group_delete, sender=ProjectGroup)

post_save.connect(project_member_save, sender=ProjectMember)
post_delete.connect(project_member_delete, sender=ProjectMember)

post_save.connect(project_group_member_save, sender=ProjectGroupMember)
post_delete.connect(project_group_member_delete, sender=ProjectGroupMember)

Note

A tested example is available in repository source code, testproject’s tests.py under
test_signals_kwargs method.

Expiring memberships

Members can be added to groups with an optional date that specifies when the
membership expires.

expiration_date property is only used to indicate when the
membership expires and has no effect on the permissions.
How this property is used is up to the user of the library.
This can be useful for example to filter out expired memberships or periodically delete them.

Set expiration date to one week from today

import datetime
from django.utils import timezone

john = models.Member.objects.create(first_name='John', last_name='Boss')
expiration = timezone.now() + datetime.timedelta(days=7)
project_main.add_member(john, expiration_date=expiration)

API

	Models
	Main models

	Group Models

	Relation Management

	Perms

Models

Main models

Group Models

Relation Management

Perms

perms module has permissions related utilities.

Templates

Requirements

The supported templates requires bootstrap3. Forms are based on django-bootstrap3 application, that can be installed with:

pip install django-bootstrap3

This application is used only to render forms.
If you don’t want to use it’s default rendering, you can override the form_template.html file as described in the example below.

Structure

Templates are organized in different sections, inside groups_manager/bootstrap3 folder.:

- groups_manager.html (extends "base.html")
 | - groups_manager_home.html (menu with links to models lists)
 | - <model>.html (model base, i.e. "member", extended by all model templates)
 | - <model>_list.html
 | - <model>_detail.html
 | - <model>_form.html (includes form_template.html)
 | - <model>_confirm_delete.html

There are different blocks:

	breadcrumbs: usually displayed on top of the page, with app - model - page links

	sidebar: menu available for the application and <model> actions (add, edit, etc)

	content: the main content of the page

To change a template, creates the same structure inside an application loaded after groups_manager
in your INSTALLED_APPS.
For example, to change form_template.html file, create the folders “groups_manager/bootstrap3/” and put
the file “form_template.html” inside.

Style

By default, style is “bootstrap3”: this means that templates are searched inside folder “groups_manager/bootstrap3”.
To change this behaviour, edit setting TEMPLATE_STYLE: it will be used in the views:

template_name = 'groups_manager%s/groups_manager.html' % TS

Tests

First of all, you need to clone the repository and create a virtualenv with all dependencies. Then you can run tests through the manage.py test command:

virtualenv django-groups-manager-test
cd django-groups-manager-test
source bin/activate
git clone https://github.com/vittoriozamboni/django-groups-manager.git
cd django-groups-manager/testproject
pip install -r requirements.txt
python manage.py test testproject groups_manager

TODO

Changelog

	
	19-01-11 (0.6.2):

	
	Added migrations for expiration_date and verbose names

	
	18-01-18 (0.6.1):

	
	Added support for Django 2

	
	17-12-09 (0.6.0) (thank you Oskar Persson!):

	
	Added group type permission handling

	Added expiration_date attribute

	Added support to django-jsonfield

	
	16-11-08 (0.5.0):

	
	Added models mixins

	Removed compatibility for Django < 1.7

	
	16-10-10 (0.4.2):

	
	Added initial migration

	Removed null attributes from m2m relations

	
	16-04-19 (0.4.1):

	
	Removed unique to group name (this cause issues when subclassing, since it does not allows to have same names for different models)

	Fixed issue with python 3 compatibility in templatetags (thank you Josh Manning!)

	
	16-03-01 (0.4.0):

	
	Added kwargs to signals for override settings parameters

	Added remove_member to group as a method (previously must be done manually)

	
	16-02-25 (0.3.0):

	
	Added permissions assignment to groups

	Added support for Django 1.8 and 1.9

	
	15-05-05 (0.2.1):

	
	Added ‘add’ to default permissions

	
	15-05-05 (0.2.0):

	
	Changed retrieval of permission’s name: ‘view’, ‘change’ and ‘delete’ will be translated to ‘<name>_<model_name>’, the others are left untouched (see permission name policy)

	Added GroupsManagerMeta class to Group that allows to specify the member model to use for members list (see custom Member model)

	14-10-29 (0.1.0): Initial version

Index

Custom member model

By default, Group’s attribute members returns a list of Member instances.
If you want to create also a custom Member model in addition to custom Group, maybe you
want to obtain a list of custom Member model instances with members attribute.
This can be obtained with GroupsManagerMeta’s member_model attribute. This class
must be defined in Group subclass/proxy.
The value of the attribute is in <application>.<model_name> form.

1) Define models in models.py:

from groups_manager.models import Group, Member

class Organization(Group):

 class GroupsModelMeta:
 model_name = 'myApp.OrganizationMember'

class OrganizationMember(Member):
 pass

2) Call Organization members attribute:

org_a = Organization.objects.create(name='Org, Inc.')
boss = OrganizationMember.objects.create(first_name='John', last_name='Boss')
org_a.add_member(boss)
org_members = org_a.members # [<OrganizationMember: John Boss>]

Note

A tested example is available in repository source code, testproject’s tests.py under
test_proxy_model_custom_member and test_subclassed_model_custom_member methods.

Custom signals

If you redefine models via proxy or subclass and you need to manage sync permissions with
a different setting (like MY_APP['AUTH_MODELS_SYNC'] you need to use different signals functions
when saving objects and relations.
Signals functions accept kwargs:

	get_auth_models_sync_func: a function that returns a boolean (default honours GROUPS_MANAGER['AUTH_MODELS_SYNC'] setting), that also take an instance parameter to allow additional checks;

	prefix and suffix on group_save``: override GROUPS_MANAGER['GROUP_NAME_PREFIX'] and GROUPS_MANAGER['GROUP_NAME_SUFFIX'];

	prefix and suffix on member_save``: override GROUPS_MANAGER['USER_USERNAME_PREFIX'] and GROUPS_MANAGER['USER_USERNAME_SUFFIX'];

So, for example, your wrapping functions will be like this:

class ProjectGroup(Group):

 class Meta:
 permissions = (('view_projectgroup', 'View Project Group'),)

 class GroupsManagerMeta:
 member_model = 'testproject.ProjectGroupMember'
 group_member_model = 'testproject.ProjectGroupMember'

class ProjectMember(Member):

 class Meta:
 permissions = (('view_projectmember', 'View Project Member'),)

class ProjectGroupMember(GroupMember):
 pass

def project_get_auth_models_sync_func(instance):
 return MY_APP['AUTH_MODELS_SYNC']

def project_group_save(*args, **kwargs):
 group_save(*args, get_auth_models_sync_func=project_get_auth_models_sync_func,
 prefix='PGS_', suffix='_Project', **kwargs)

def project_group_delete(*args, **kwargs):
 group_delete(*args, get_auth_models_sync_func=project_get_auth_models_sync_func, **kwargs)

def project_member_save(*args, **kwargs):
 member_save(*args, get_auth_models_sync_func=project_get_auth_models_sync_func,
 prefix='PMS_', suffix='_Member', **kwargs)

def project_member_delete(*args, **kwargs):
 member_delete(*args, get_auth_models_sync_func=project_get_auth_models_sync_func, **kwargs)

def project_group_member_save(*args, **kwargs):
 group_member_save(*args, get_auth_models_sync_func=project_get_auth_models_sync_func, **kwargs)

def project_group_member_delete(*args, **kwargs):
 group_member_delete(*args, get_auth_models_sync_func=project_get_auth_models_sync_func, **kwargs)

post_save.connect(project_group_save, sender=ProjectGroup)
post_delete.connect(project_group_delete, sender=ProjectGroup)

post_save.connect(project_member_save, sender=ProjectMember)
post_delete.connect(project_member_delete, sender=ProjectMember)

post_save.connect(project_group_member_save, sender=ProjectGroupMember)
post_delete.connect(project_group_member_delete, sender=ProjectGroupMember)

Note

A tested example is available in repository source code, testproject’s tests.py under
test_signals_kwargs method.

Expiring memberships

Members can be added to groups with an optional date that specifies when the
membership expires.

expiration_date property is only used to indicate when the
membership expires and has no effect on the permissions.
How this property is used is up to the user of the library.
This can be useful for example to filter out expired memberships or periodically delete them.

Set expiration date to one week from today

import datetime
from django.utils import timezone

john = models.Member.objects.create(first_name='John', last_name='Boss')
expiration = timezone.now() + datetime.timedelta(days=7)
project_main.add_member(john, expiration_date=expiration)

Projects management with Model Mixins

Mixins allows to create shared apps based on django-groups-manager.
The mixins approach has pros and cons.

	Pros:

	
	models are completely customizable (add all fields you need);

	all fields are in the same table (with subclassed models, only extra fields are stored in the subclass table);

	better for shared applications (the “original” django-groups-manager tables don’t share entries from different models).

	Cons:

	
	all external foreign keys must be declared in the concrete model;

	all signals must be declared with concrete models.

Model mixins example

The following models allow to manage a set of Organizations with related members (from organization app).
In this example, a last_edit_date is added to models, and member display name has the user email (if defined).

1) Define models in models.py:

from groups_manager.models import GroupMixin, MemberMixin, GroupMemberMixin, GroupMemberRoleMixin, \
 GroupEntity, GroupType, \
 group_save, group_delete, member_save, member_delete, group_member_save, group_member_delete

class OrganizationMemberRole(GroupMemberRoleMixin):
 pass

class OrganizationGroupMember(GroupMemberMixin):
 group = models.ForeignKey('OrganizationGroup', related_name='group_membership')
 member = models.ForeignKey('OrganizationMember', related_name='group_membership')
 roles = models.ManyToManyField(OrganizationMemberRole, blank=True)

class OrganizationGroup(GroupMixin):
 last_edit_date = models.DateTimeField(auto_now=True, null=True)
 short_name = models.CharField(max_length=50, default='', blank=True)
 country = CountryField(null=True, blank=True)
 city = models.CharField(max_length=200, blank=True, default='')

 group_type = models.ForeignKey(GroupType, null=True, blank=True, on_delete=models.SET_NULL,
 related_name='%(app_label)s_%(class)s_set')
 group_entities = models.ManyToManyField(GroupEntity, null=True, blank=True,
 related_name='%(app_label)s_%(class)s_set')

 django_group = models.ForeignKey(DjangoGroup, null=True, blank=True, on_delete=models.SET_NULL)
 group_members = models.ManyToManyField('OrganizationMember', through=OrganizationGroupMember,
 through_fields=('group', 'member'),
 related_name='%(app_label)s_%(class)s_set')

 class Meta:
 permissions = (('manage_organization', 'Manage Organization'),
 ('view_organization', 'View Organization'))

 class GroupsManagerMeta:
 member_model = 'organizations.OrganizationMember'
 group_member_model = 'organizations.OrganizationGroupMember'

 def save(self, *args, **kwargs):
 if not self.short_name:
 self.short_name = self.name
 super(OrganizationGroup, self).save(*args, **kwargs)

 @property
 def members_names(self):
 return [member.full_name for member in self.group_members.all()]

class OrganizationMember(MemberMixin):
 last_edit_date = models.DateTimeField(auto_now=True, null=True)
 django_user = models.ForeignKey(DjangoUser, null=True, blank=True, on_delete=models.SET_NULL,
 related_name='%(app_label)s_%(class)s_set')

 class GroupsManagerMeta:
 group_model = 'organizations.OrganizationGroup'
 group_member_model = 'organizations.OrganizationGroupMember'

 def __unicode__(self):
 if self.email:
 return '%s (%s)' % (self.full_name, self.email)
 return self.full_name

 def __str__(self):
 if self.email:
 return '%s (%s)' % (self.full_name, self.email)
 return self.full_name

2) Connect creation and deletion signals to the models

(This step is required if you want to sync with django auth models):

post_save.connect(group_save, sender=OrganizationGroup)
post_delete.connect(group_delete, sender=OrganizationGroup)

post_save.connect(member_save, sender=OrganizationMember)
post_delete.connect(member_delete, sender=OrganizationMember)

post_save.connect(group_member_save, sender=OrganizationGroupMember)
post_delete.connect(group_member_delete, sender=OrganizationGroupMember)

3) Customize the flag for AUTH_MODEL_SYNC

If you plan to create a reusable app and to let users decide if sync or not with Django auth models
independently from groups_manager settings, you should define a separated function that
returns the boolean value from your own settings:

def organization_with_mixin_get_auth_models_sync_func(instance):
 return organization.SETTINGS['DJANGO_AUTH_MODEL_SYNC'] # example

def organization_group_member_save(*args, **kwargs):
 group_member_save(*args, get_auth_models_sync_func=organization_get_auth_models_sync_func, **kwargs)

def organization_group_member_delete(*args, **kwargs):
 group_member_delete(*args, get_auth_models_sync_func=organization_get_auth_models_sync_func, **kwargs)

post_save.connect(organization_group_member_save, sender=OrganizationGroupMember)
post_delete.connect(organization_group_member_delete, sender=OrganizationGroupMember)

Note

The full tested example is available in repository source code, testproject’s tests.py under test_model_mixins method.

Resource assignment via group type permissions

Permissions can also be applied to related groups filtered by group types.
Instead of simply using a list to specify permissions one can use a dict to
specify which group types get which permissions.

Example

John Money is the commercial referent of the company; Patrick Html is the web
developer. John and Patrick can view the site, but only Patrick can change and
delete it.

1) Define models in models.py:

class Site(Group):
 name = models.CharField(max_length=100)

 class Meta:
 permissions = (('view_site', 'View site'),
 ('sell_site', 'Sell site'),)

2) Create models and relations:

from groups_manager.models import Group, GroupType, Member
from models import Site

Parent Group
company = Group.objects.create(name='Company')

Group Types
developer = GroupType.objects.create(label='developer')
referent = GroupType.objects.create(label='referent')

Child groups
developers = Group.objects.create(name='Developers', group_type=developer, parent=company)
referents = Group.objects.create(name='Referents', group_type=referent, parent=company)

Members
john = Member.objects.create(first_name='John', last_name='Money')
patrick = Member.objects.create(first_name='Patrick', last_name='Html')

Add to groups
referents.add_member(john)
developers.add_member(patrick)

Create the site
site = Site.objects.create(name='Django groups manager website')

3) Define custom permissions and assign the site object:

custom_permissions = {
 'owner': [],
 'group': ['view'],
 'groups_downstream': {'developer': ['change', 'delete'], 'default': ['view']},
}
john.assign_object(company, site, custom_permissions=custom_permissions)

4) Check permissions:

john.has_perm('view_site', site) # True
john.has_perm('change_site', site) # False
john.has_perm('delete_site', site) # False
patrick.has_perms(['view_site', 'change_site', 'delete_site'], site) # True

Note

The full tested example is available in repository source code, testproject’s tests.py under test_group_types_permissions method.

Resource assignment via role permissions

John Money is the commercial referent of the company; Patrick Html is the web
developer. The company has only one group, but different roles.
John can view and sell the site, and Patrick can view, change and delete the site.

1) Define models in models.py:

class Site(Group):
 name = models.CharField(max_length=100)

 class Meta:
 permissions = (('view_site', 'View site'),
 ('sell_site', 'Sell site'),)

2) Create models and relations:

from groups_manager.models import Group, GroupMemberRole, Member
from models import Site
Group
company = Group.objects.create(name='Company')
Group Member roles
commercial_referent = GroupMemberRole.objects.create(label='Commercial referent')
web_developer = GroupMemberRole.objects.create(label='Web developer')
Members
john = Member.objects.create(first_name='John', last_name='Money')
patrick = Member.objects.create(first_name='Patrick', last_name='Html')
Add to company
company.add_member(john, [commercial_referent])
company.add_member(patrick, [web_developer])
Create the site
site = Site.objects.create(name='Django groups manager website')

3) Define custom permissions and assign the site object:

custom_permissions = {
 'owner': {'commercial-referent': ['sell_site'],
 'web-developer': ['change', 'delete'],
 'default': ['view']},
 'group': ['view'],
 'groups_upstream': ['view', 'change', 'delete'],
 'groups_downstream': ['view'],
 'groups_siblings': ['view'],
}
john.assign_object(company, site, custom_permissions=custom_permissions)
patrick.assign_object(company, site, custom_permissions=custom_permissions)

4) Check permissions:

john.has_perms(['view_site', 'sell_site'], site) # True
john.has_perm('change_site', site) # False
patrick.has_perms(['view_site', 'change_site', 'delete_site'], site) # True
patrick.has_perm('sell_site', site) # False

Note

The full tested example is available in repository source code, testproject’s tests.py under test_roles method.

Projects management with Proxy Models

John Boss is the project leader. Marcus Worker and Julius Backend are the
django backend guys; Teresa Html is the front-end developer and Jack College is the
student that has to learn to write good backends.
The Celery pipeline is owned by Marcus, and Jack must see it without intercations.
Teresa can’t see the pipeline, but John has full permissions as project leader.
As part of the backend group, Julius has the right of viewing and editing, but not to
stop (delete) the pipeline.

1) Define models in models.py:

from groups_manager.models import Group, GroupType

class Project(Group):
 # objects = ProjectManager()

 class Meta:
 proxy = True

 def save(self, *args, **kwargs):
 if not self.group_type:
 self.group_type = GroupType.objects.get_or_create(label='Project')[0]
 super(Project, self).save(*args, **kwargs)

class WorkGroup(Group):
 # objects = WorkGroupManager()

 class Meta:
 proxy = True

 def save(self, *args, **kwargs):
 if not self.group_type:
 self.group_type = GroupType.objects.get_or_create(label='Workgroup')[0]
 super(WorkGroup, self).save(*args, **kwargs)

class Pipeline(models.Model):
 name = models.CharField(max_length=100)

 class Meta:
 permissions = (('view_pipeline', 'View Pipeline'),)

Warning

Remember to define a view_modelname permission.

2) Connect creation and deletion signals to the proxy models
(This step is required if you want to sync with django auth models):

from django.db.models.signals import post_save, post_delete
from groups_manager.models import group_save, group_delete

post_save.connect(group_save, sender=Project)
post_delete.connect(group_delete, sender=Project)
post_save.connect(group_save, sender=WorkGroup)
post_delete.connect(group_delete, sender=WorkGroup)

3) Creates groups:

project_main = testproject_models.Project(name='Workgroups Main Project')
project_main.save()
django_backend = testproject_models.WorkGroup(name='WorkGroup Backend', parent=project_main)
django_backend.save()
django_backend_watchers = testproject_models.WorkGroup(name='Backend Watchers',
 parent=django_backend)
django_backend_watchers.save()
django_frontend = testproject_models.WorkGroup(name='WorkGroup FrontEnd', parent=project_main)
django_frontend.save()

4) Creates members and assign them to groups:

john = models.Member.objects.create(first_name='John', last_name='Boss')
project_main.add_member(john)
marcus = models.Member.objects.create(first_name='Marcus', last_name='Worker')
julius = models.Member.objects.create(first_name='Julius', last_name='Backend')
django_backend.add_member(marcus)
django_backend.add_member(julius)
teresa = models.Member.objects.create(first_name='Teresa', last_name='Html')
django_frontend.add_member(teresa)
jack = models.Member.objects.create(first_name='Jack', last_name='College')
django_backend_watchers.add_member(jack)

5) Create the pipeline and assign custom permissions:

custom_permissions = {
 'owner': ['view', 'change', 'delete'],
 'group': ['view', 'change'],
 'groups_upstream': ['view', 'change', 'delete'],
 'groups_downstream': ['view'],
 'groups_siblings': [],
}
pipeline = testproject_models.Pipeline.objects.create(name='Test Runner')
marcus.assing_object(django_backend, pipeline, custom_permissions=custom_permissions)

Note

The full tested example is available in repository source code, testproject’s tests.py under test_proxy_models method.

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Django Groups Manager

 		
 Installation

 		
 Basic usage

 		
 Django auth models integration

 		
 Settings

 		
 Auth model synchronization

 		
 Permissions

 		
 Templates

 		
 Defaults

 		
 Use cases

 		
 Projects management with Proxy Models

 		
 Projects management with Model Mixins

 		
 Model mixins example

 		
 Resource assignment via role permissions

 		
 Resource assignment via group type permissions

 		
 Example

 		
 Custom member model

 		
 Custom signals

 		
 Expiring memberships

 		
 API

 		
 Models

 		
 Main models

 		
 Group Models

 		
 Relation Management

 		
 Perms

 		
 Templates

 		
 Requirements

 		
 Structure

 		
 Style

 		
 Tests

 		
 TODO

 		
 Changelog

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

